A framework for generating tunable test functions for multimodal optimization
نویسندگان
چکیده
Multimodal function optimization, where the aim is to locate more than one solution, has attracted growing interest especially in the evolutionary computing research community. To evaluate experimentally the strengths and weaknesses of multimodal optimization algorithms, it is important to use test functions representing different characteristics and various levels of difficulty. The available selection of multimodal test problems is, however, rather limited and no general framework exists. This paper describes an attempt to construct a software framework which includes a variety of easily tunable test functions. The aim is to provide a general and easily expandable environment for testing different methods of multimodal optimization. Several function families with different characteristics are included. The framework implements new parameterizable function families for generating desired landscapes. Additionally the framework implements a selection of well known test functions from the literature, which can be rotated and stretched. The software module can easily be imported to any optimization algorithm implementation compatible with the C programming language. As an application example, 8 optimization approaches are compared by their ability to locate several global optima over a set of 16 functions with different properties generated by the proposed module. The effects of function regularity, dimensionality and number of local optima on the performance of different algorithms are studied.
منابع مشابه
A Generator for Multimodal Test Functions with Multiple Global Optima
The topic of multimodal function optimization, where the aim is to locate more than one solution, has attracted a growing interest especially in the evolutionary computing research community. To experimentally evaluate the strengths and weaknesses of multimodal optimization algorithms, it is important to use test functions representing different characteristics and of various levels of difficul...
متن کاملFuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملThe Explicit Exploration Information Exchange Mechanism for Niche Technique
This paper presents a novel explicit exploration information exchange mechanism for niche technique. In this framework, the whole population is divided into many sub-populations. The different sub-population communicates with each other. One sub-population exploration area does not be explored by others. Based on this framework, a multi-sub-swarm particle swarm optimization (MSSPSO) algorithm i...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملOPTIMIZATION OF ENDURANCE TIME ACCELERATION FUNCTIONS FOR SEISMIC ASSESSMENT OF STRUCTURES
Numerical simulation of structural response is a challenging issue in earthquake engineering and there has been remarkable progress in this area in the last decade. Endurance Time (ET) method is a new response history based analysis procedure for seismic assessment and structural design in which structures are subjected to a gradually intensifying dynamic excitation and their seismic performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 15 شماره
صفحات -
تاریخ انتشار 2011